1. 上一篇 下一篇
  2. 第3280期   20180327
  3. 放大 缩小 默认 朗读

国外微小型导弹技术发展分析

“长钉”导弹家族

洛马公司的“微型直接碰撞杀伤”导弹

雷神“长矛”导弹

“长矛”导弹

张梦湉

近年来,随着反恐等低烈度军事行动对打击低价值目标需求的增长,微小型导弹应运而生并成为发展的新热点;微感知、微处理、微控制、微动力、微集成等微系统技术的进步,为微小型导弹快速发展不断注入新的动力。目前,微小型导弹发展成果主要出现在美国,其中,美国的“长钉”导弹、“长矛”导弹、“微型直接碰撞杀伤”导弹等,在弹体尺寸、制造成本、作战能力等方面都展现出明显优势,成为精确制导武器发展的一个新方向。

国外微小型导弹发展现状

从目前美国的发展情况看,通常微小型导弹的弹长小于1米、质量不超过5千克,主要采用手持发射或地面发射,用于打击步兵装甲目标,或防御火箭、火炮、迫击炮、无人机等低成本目标,具有价格低、重量轻、威力大、精度高的特点,在摧毁目标的同时能减少附带损伤,可用做单兵便携式武器或战术无人机的武器装备。目前还在致力于缩小导弹尺寸、提高打击精度、降低作战成本、实现多用途化。

(一)“长钉”导弹可实现对集群目标的高效费比作战

“长钉”导弹由海军空战中心武器分部设计研制,主要用于打击轻型装甲车、建筑物、小型舰艇、小型无人机等目标,还可用于应对日趋严峻的小型舰艇集群、无人机集群等威胁。“长钉”导弹弹长63.5厘米,弹径5.625厘米,重2.3千克,射程3.2千米;采用电视制导,可实现发射前锁定、发射后不管;可采用地面固定发射、空中无人机发射或士兵肩扛发射多种发射方式;动力装置为低烟固体火箭发动机,发射时不产生火光及烟尘。

该导弹大量采用其他导弹的零部件及商业器件,批产成本低,单价不超过5000美元。美军已对“长钉”导弹进行了多项试验,验证了其对地面机动目标和无人机的打击能力,目前还在继续改进升级,以进一步提升作战效能。

(二)“长矛”导弹显著改善步兵火力不足的问题

“长矛”导弹由雷神公司自行研制,是目前世界上尺寸最小的导弹,弹长42.6厘米,弹径40毫米,重771克,射程2千米;也是世界上首款由手持武器发射的导弹,可由M320榴弹发射器或EGLM榴弹发射模块发射,打击固定或中慢速移动目标,使单兵具备精确打击远距离目标的能力。“长矛”导弹为半主动激光制导,并采用冷发射,在出膛3米左右后启动火箭发动机,在发射和飞行过程中几乎不产生烟雾,具有良好的隐蔽性。

雷声公司和美国军方正在对“长矛”导弹进行实战能力试验。雷声公司计划进一步优化“长矛”导弹的软硬件,并为其配备先进数据链及多种战斗部,以提升打击精度、智能化水平、多任务作战能力。升级后的“长矛”导弹可由水面舰艇、全地形车以及无人机等多种平台搭载。

(三)“微型直接碰撞杀伤”导弹用于防空和对地作战

“微型直接碰撞杀伤”导弹是洛克希德·马丁公司在美国陆军“增程型区域防护与生存力”项目支持下发展的动能拦截弹,于2015年正式纳入“间接火力防护能力增量2”项目,可与直升机、无人机、单兵发射系统等集成,具备对巡航导弹、无人机、精确制导弹药等多种目标进行战术打击的能力。弹长71.1厘米、弹径4厘米、重2.5千克、有效射程超过3千米,采用半主动雷达制导,加装了穿透增强装置,能在短暂飞行过程中选择目标最脆弱的部位进行攻击,使毁伤效果最大化。该导弹采用了纳莫公司研制的紧凑型火箭发动机,可实现能量的快速转化。

洛克希德·马丁公司于2016年4月和7月成功进行了2次“微型直接碰撞杀伤”导弹的飞行试验,验证了导弹的机动性、空气动力学性能以及与多任务发射器车载机动发射系统的集成性。

微小型导弹关键技术分析

为满足微小型导弹对弹体尺寸、制导精度、发射装置、制造成本的要求,优化导弹气动布局、采用低成本制导控制系统、研制低特征信号固体火箭推进剂成为微小型导弹发展的关键。

(一)优化气动布局设计提升导弹飞行速度与射程

微小型导弹需要在小型化的前提下,获得较大的飞行速度、可用过载和射程,设计合理的气动外形布局十分关键。“长钉”导弹、“微型直接碰撞杀伤”导弹等都采用了鸭式气动布局。鸭式气动布局有利于降低弹重、提高舵的操纵效率、减小舵翼面积,是微小型导弹常用的外形设计。采用鸭式布局的微小型导弹可装配弹出式尾翼或折叠式尾翼,弹出式尾翼可最大化利用发射空间,折叠式尾翼有利于获得更大的升力与过载。

微小型导弹可采用两级发动机结构,实现导弹的安全发射与有效射程。第一级发动机采用速燃助推技术,可使导弹安全从发射器推出,这时导弹尾翼张开、保持鸭舵锁定状态,无控平飞至安全距离,然后启动二级发动机,待二级发动机工作结束后,鸭舵展开,导弹进入有控飞行阶段。在有控飞行阶段,导弹主要通过调整舵偏角和攻角,实现弹体的稳定飞行。

(二)采用捷联惯导实现制导控制系统微型化、低成本

捷联导引头去掉了惯性平台及随动系统,将惯性元件与弹体固连,具有体积小、质量轻、成本低、可靠性高的特点,是微小型导弹制导系统的首选方案,在以“长钉”导弹为代表的微小型导弹中得到应用。涉及的关键技术主要包括:弹体运动隔离、制导控制系统一体化设计和惯性视线角速率的重构及滤波。

捷联导引头的惯性测量单元与弹体固连,导引头的直接测量量包含了弹体运动信息。为获得惯性系下的弹目相对运动信息与弹体视线角及其速率的关系,就需要选择合适的解耦算法对导引头测量量进行坐标变换。此外,由于微小型导弹的射程很短,弹目相对距离小,采用传统制导回路和控制回路分开设计的方案会导致导弹失稳、脱靶量大等问题,制导控制一体化设计可使系统自动补偿制导与控制环节之间的耦合,降低甚至消除不稳定性,提高制导精度。

(三)研发低特征信号固体火箭推进剂提高导弹发射隐蔽性

低特征信号是指火箭发动机排气羽流的烟、羽焰的可见光、红外和紫外辐射等特征信号较低,使导弹具有较好的隐蔽性,是研发“长钉”“长矛”等手持发射微小型导弹的关键技术之一。研究低特征信号推进剂,实现推进剂无烟无焰,提升固体推进剂的安全性,是国内外研究的重点。美国开展了低特征信号火箭推进项目研究,旨在提升低烟火箭推进系统的钝感性能,2018~2023年集中解决碎片撞击、慢烤燃问题,以及药型罩金属射流对导弹推进系统的钝感性能响应问题。

目前,导弹固体发动机采用的低特征信号推进剂主要是双基和复合固体推进剂。其中采用含叠氮基的含能粘合剂代替现有的惰性粘合剂而成的叠氮低特征信号推进剂,具有密度大、氧平衡值高、燃气洁净、特征信号低、热安全性高、与含能增塑剂相容性好等优点,已成为低特征信号推进剂的首选。

微小型导弹发展趋势

无人机作战、城市巷战以及反恐战争对单兵携带高精度制导弹药的需求,推动了微小型导弹的迅速发展。在捷联制导技术、导引头技术、导弹微小型化等关键技术工程化应用方面取得更进一步突破后,微小型导弹有望大量部署,实现高精度、低成本作战。

(一)实现通用化、模块化、低成本,满足未来作战需求

目前,美军正积极发展“微型直接碰撞杀伤”导弹的多任务能力,实现多平台通用;“长钉”“长矛”导弹更是以低廉的价格成为步兵作战利器。未来,发展微小型导弹首先应考虑通用化、模块化、低成本。开展多平台、多军种通用设计,能实现单兵、地面固定装置、小型无人机、小型舰艇等多方式发射,为各军种提供快速、便捷、机动、灵活的对战术打击能力。采用模块化设计思想和标准化元件,最大限度地使用其他导弹的零部件或商业现货,增强互换性,减少系统结构变动和新研元件带来的成本。

(二)加速微惯性传感器发展与应用,进一步提高打击精度

面向未来高强度对抗与GPS拒止环境作战需求,微小型导弹惯性测量器件在满足小型化基础上,还需进一步提高精度。目前,不依赖GPS的微惯性传感器成为关注焦点。美国休斯研究实验室计划将哥氏振动陀螺的微机电系统传感器与极精准原子钟的基准频率同步,利用原子超精细跃迁频率的精确性,研制不依赖GPS的惯性传感器。诺斯罗普·格鲁门公司正在研制基于MEMS的下一代导航级惯性测量装置的原型系统,以取代美军当前部署的器件,提供更加精确的导航数据。

(三)提高网络化、智能化水平,开发战场运用新模式

目前,微小型导弹主要应用于单兵作战,打击运动速度相对较低的地面目标。未来,在嵌入网络技术与人工智能技术后,微小型导弹的作战运用范围可进一步拓展。一方面,微小型导弹可装备陆海空的小型作战平台或无人平台,利用网络化技术增强与外部传感器的信息交互能力,拓展打击目标的类型与范围;另一方面,微小型导弹可利用人工智能技术发展多弹协同作战能力,成为多对多导弹对抗的手段之一。